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Abstract—[n the present work we examine the stress field around a hole in certain ceramic materials.
The hole is under internal pressure in plane strain conditions. The material behavior is initially
isotropic lincarly elastic and upon loading develops microcracks. The damage is assumed to be
anisotropic and microcracking is belicved to take place along preferred orientations. A damaged
constitutive law., appropriate for the microcracking assumptions. is used to derive exact results for
the stress fields in this particular problem. The present analysis may find applications in the
experimental investigation of ceramic materials behaving as anisotropically microcracking solids.

1. INTRODUCTION

A growing body of rescarch is presently concerned with the development of mechanics of
brittle solids such as ceramics. These are materials which while not undergoing plastic
deformations of any significance at low temperatures, can nevertheless behave quite inclas-
tically as a result of the nucleation of microcracks.

Ceramics are processed at high temperatures and then cooled to ambicat. This causes
single-phase cerumics to microcrack along the grain boundaries due to some external
stress. Microcracks in these ceramic materials are typically isolated due to residual stress
distributions and the inclined adjucent boundary fucets (Fu, 1983). When tensile stress is
applied to ceramics, favorably oriented grain boundary facets will crack. As the stress is
raised, more grain facets crack and so stress-induced damage progresses with increasing
applied tensile stress,

Consider a macroscopic element of the material. As the number of microcracks in the
material increases, the material becomes more compliant. Anisotropy will develop because
the maximum principal stress will influence the microcrack orientation. If the applied
stress is removed after reaching a peak value, the microcracked density is retained since
microcracking is an irreversible process. Therefore, the unloading stress-strain curve is
linear, resulting in a hysteresis loop. The amount of strain energy dissipation is equivalent
to the area enclosed by this hysteresis loop. We will assume that both the size of the
microcracks and their separation are small and therefore a typical material element can be
regarded as containing numerous microcracks (smeared damage) so that computations can
be based on the effective behavior of the homogenized solid. The uniaxial stress-strain
behavior of the material for this type of material is shown in Fig. la. This behavior will be
simplified by assuming a trilincar stress-strain idealization, shown in Fig. 1b.

Assuming monotonic stress paths, a deformation theory of damage can be obtained.
The stress—strain relation, provided that the material is initially uncracked. becomes (Ortiz,
1987 ; Ortiz and Giannakopoulos, 1989)

&, = (Chu+ Ao Innnun)oy, (0

where C}), are the isotropic linearly elastic compliances of the uncracked material and n is
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Fig. 1. ta) Elastic-damaged uniaxial behavior. (b} Assumed trilinear idealization of the uniaxial
stress-strain curve.

the direction of maximum tensile stress ¢,. The function i{a,) is a measure of damage and
from the trilinear uniaxial stress—strain law

6, g, <0, (0p>0)
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Equations (1) and (2) describe a nonlinear, anisotropic elastic material, There are three
distinet regions of the stress-strain curve (Fig. 1b) which correspond to three possible
microcracked stages of the material. In the elastic stage (6, < g,), the matertal does not
develop microcracking. In the saturation stage (¢, 2 ¢,), all possible microcrack sites are
active and the material sustains no further damage. Between the elastic and the saturated
region there is the transition zone {g, < o, € g,), where the material undergoes partial
microcracking.

2. HOLE UNDER INTERNAL PRESSURE

The problem we will investigate is a hole of radius ry, in an infinite ceramic medium
that obeys egns (1) and (2). At the faces of the hole we apply an internal pressure p, > 0
(Fig. 2). The conditions for the material are plane striain, axisymmetric. Then, the only
nonzero strains will be &, and g,,. with (r, 0} being the polar coordinates of the problem.
From the clastic solution, we know that g,, and o, ar¢ the only nonzero stresses on the
(r.0) planc and they are also principal stresses.

If

Pa S Cq, (3)

then the material behaves elastically and we have the well known clastic solution
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Y

X
a.=0 for r>r,. 4)
Suppose we increase the applicd pressure monotonically so that
po>ay>0. 3

Then, microcracking will start forming in the vicinity of the hole. This microcracking will
change the stress field around the hole. However, far enough from the hole eqn (4) will still
hold, since the stresses decay rapidly. To proceed with the solution, we make the following
assumptions which must be justified a posteriori:

Gy > Gy

o >0, forall rg<r. (6)

The assumptions described by (6) simply state that 64 is the maximum principal tensile
stress at all times, Note that from the plane strain conditions (g, = 0)

a.. = V0(61m+arr) (7)

and since the Poisson ratio of the intact material is limited by — 1 < vy < 1/2, we conclude
that ¢.. < 4. The above assumption indicates that

0 = Oy

-(2)-0) ®

Therefore, the microcracks will develop parallel to the radial directions, as shown in Fig. 2.
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Then. the constitutive relations will have the following explicit form :

. __l*'*\‘[:)o_ ”(]‘*‘"())"90_
rr E() re E“ L
(1+vo)vo P—vy |
Egy = — —ME*‘—'G,,*F - Y +A(gw) |Ow %
0 i)

where A{ouw) is given by eqn (2).
The only displacement entering the problem is the radial displacement w.(r}). The
geometric relutions are then

u,
b =
’
du, (10)
grr = .
dr
From eqn (10) we can write the compatibility equation for this problem as
¢ (Fran) +r degn (an
2 = - (PR} = & i
dr 1 el dr
The equilibrium cquation is simply
d
ow = - (re,). (12)
dr

We can write the stresses in terms of a potential, X(r), so that equilibrium is automatically
satisfied. Then

o, = X(r}
am = X(ry+rX,(r). (13)

Using eqns (13). (9) and (1 1) we may cast the governing equation for our problem as
an ordinary differential equation in terms of X(r):

FPAFX, +rBA+35+ri )X, +(A+ri,)X =0 (14)
where
1 —v;
A=—r2>0 (15a)
E,

0 G € Oy

J= (I — “ff~~~.»)c = (I - -‘fi’-)c: 0y € O S 0, (15b)
X +r.¥., G o
D ) a( g aml

0. ow <o,
2X, 417X,

o,C *i;f‘*"—;*‘r:: Tq €0y £ 0, (15¢)
(X+rX,)

0. o0, S0m
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1 1
— 15d
C E. £e>0 (15d)
D-—l L>a-0 <C (15¢)
T E  E;T '

The boundary conditions are

a,,(r= ro) = “’p() <0

""}-»0. o +oc. (16)

Oon
From continuity of tractions we have the following jump conditions for all r > ry:
{0.]=0. {n
From continuity of displacements we have
[,] = 0. (i8)

From (18) and (10) we can assure that [r,,] = 0. Notice that 4+ gy = C(g—04). Therefore,
from ¢qn (9) we conclude

[‘7001 = 0. (19)

At the interfaces of the saturated, clastic and transition regions around the hole,
o, (r=r)= —a, Gu(r=r.) =0, ou(r=r)=a, where r, is the radius of the elastic
boundary and r, that of the saturation boundary (Fig. 3). Plane stress conditions can be
casily obtained by chunging v, to v,/(1 —v,) and E, to Ey/(1 —v}).

3. SOLUTION FOR THE STRESS FIELD

The gencral form of the solution of eqn (14) is given by the following expressions:

X=kyr+ky; opw<o, (20a)

X=klr S klr "o, o< oy <o, (20b)

X=kUrt v ir-17% g, < oy (20c)

(- (k) 0
A B2

&= (A_.;..D,) . (20e)

The constant coeflicients k', &%, ... k" will be determined from the boundary conditions
on the hole fuce and at infinity, and from the continuity of tractions at the interfaces. Note
that the general solution (20) may also be useful for solving the thick tube problem, by
appropriately changing the boundary conditions.
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Fig. 3. The possible elustodamage boundaries for & hole under internal pressure Po- Yo, € py €,
by o, < Po-

To proceed with determining the constant coeflicients, it is convenient to distinguish
two cases. In the first case (Fig. 3a), there is an elastic region and a transition region, so
that eqns (20a) and (20b) apply. In the second case (Fig. 3b), therc is in addition a saturated
region, meaning that eqn (20¢) applics as well. The regions are separated by circulur
bounditries. We denote the boundary of the saturation region by r.. Clearly

O<ry,<r, <r,.

Fe. ’
a.{rzr)= —ag, i

r M
Guwlr 2r.) = 6«)(:) . 2n

The elastic solution will read as

For the transition region the solution will behave as

a.(r,Sr<r)=cr it ert! it
)

g
Gonlr, Sr&r) =g (oyr 5 —cr! )40y (22)
For the saturation region the solution will be

G ry Sr<r)=dir "rdkd,yr
Gulryg S r <) =E{dyr "o dar 175, (23)
The coeflicients ¢, and ¢, cin be determined from the continuity of stresses between
the elastic and the transition distributions of stresses. The result is

N — '“':(
Oy = =Gyl

Cy= —grlte. (29)

The coefficients o, and . can be determined from continuity of stresses between the
transition and the saturation distributions of stresses. The result is
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Fig. 4. The dependence of r,/r, on g,/0, for a hole under internal pressure.
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dy = 5 [Uo"' f: -l 1~ é’ . —a\ L+ f‘ r, . (25)

From the above results one can show that the assumptions (6) hold in this case.
Finally, we can notice that g,/ is connected with r,/r, through the relation

B E T r =13
: ) +(l) }+1. (26)
rt’
A plot of this curve is shown in Fig. 4.

The general results derived so far can be represented in a single graph of o, and gy.
This graph is shown in Fig. 3, for v, = 0.25, E//E, = 0.25, E,/E, = 0.534. One can notice
the change of slope in the a,, distribution. This graph can be used in the following way,
From the graph and for a,, = —p,, we can determine a radius which will actually be the
real ry, and which will scale the rest of the dimensions.
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4. HOLE UNDER INTERNAL TENSION

It is interesting to state the general solution for the case when there is an internal
tension instead of compression on the hole boundary. Following arguments similar to those
in Section 3, microcracks may develop normal to the radial directions (Fig. 6). Then, we
may assume a unilateral constraint of the type

O > Opg

o, >0a, forall ry<r,. 27

The above assumptions indicate that
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Fig. 5. Stress distributions a,./a, and a,/6, for a hole under internal pressure (v, = 0.25,

EE, =025 E/E, =053, a/a,=1410r r =06}
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-0
"=\ T o) (8)

Following an analysis similar to the one in Section 3, we may state the ordinary
differential equation which controls the solution in the form

AN = AQBrX, +r°X,)

(29)
with

0. o, <0,

rr

I= (C— G“\/C); 6, <0, <o, (30)
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Fig. 6. The possible clastodamage boundarics for a hole under internal tension. (a) o, < p, < 0,
(h) a, < pa-
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The solution to (29) can be written for the three separate regions as was done in Section 3.
The result is

X=0r244: 6,<0 (3la)
X=MNr g eyt ""gay, o< 0, €0, {31b)
=/t lly-1= g, <0, (3lc)
A+CVF
=1 3id)
L ( 1 ) {
A+ DY
wom | e | 3le)
1 ( A ) (

The elastic solution would be

r

r. \
a,rzr)= rrn(—)

F, 2
gwlr 2r.) = “‘33(;) - (33}

In the transition region the solution is

o, Sr<r)=Lr "t lr N 4a,
<

£
Sulr. Srsr) =m(lr =l ) 40, (33)

In the saturation region the stresses are

Urr(rl) r ﬁ rr) = /"r“f*'f:_{‘f:r'l"'n
K

<
cwlro Srer)=mn(fir ”'F:_.fzr" =), (34)

The coefficients /, and /, can be determined from the continuity of tractions between
the elastic and the transition distributions of stresses. The result is

1~
ly = —aor; ™/,

Iy = oor, "y (35

The coefficients f, and f; can be determined from continuity of stresses between the
transition and the saturation distributions of stresses. The result is

o) -2 ]
=1 _Jg, 4 ~{l4g-}2 o=
4 2 [n n: H:/ \Le m N2/ \Fe
Flr Gg Gy m)(ﬂ S 53( '?x) ?x)*iq’
=7 [gﬁ‘g‘;‘; AT RGN v A B
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Fig. 7. The dependence of r /r, on ¢4/a, for a hole under internal tension (5, = /3, n, > 1).

One can also verify that the assumption (27) holds. Finally, we cun again notice that ¢,/5,
is connected with r,/r, through the relation

[ed

i r RN , Eog,
= w() +() }M. (37)
Ty 1y r. r.

A plot of this curve is shown in Fig. 7.

The general results are represented in a single graph of ¢, and oy, shown in Fig. 8.
with v, = 0.25, E,/E, = 0.15, £,/ E, = 0.332. Note that the slope of the curves are continu-
ous. The interpretation of the graph iy that the stress level a,, = p,. determines the radius
which will be the real r,. and which will scale the rest of the dimensions,
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Fig. 8 Stress distributions o,/0, and au/v, for a hole under internmal tension {v, = 0.25,
EpjEy =028, £.E, = 0332, 6,00, = 3031 rr, = 0.6).
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5. CONCLUSIONS

The results presented provide an exact solution for the axially symmetric ring problems
when the material behaves as an anisotropically microcracking solid. These results can
serve as the theoretical background for pressurized ring experiments evaluating the material
constants involved in this type of constitutive laws. Furthermore. the results can be used
for the structural analysis of ring-type components, made from ceramics, Finally. the
analytic solution may form a basis for checking finite element algorithms that compute
anisotropic damage.

There are few analytical solutions and test configurations that enable progressing
microcracking to be developed in a confined way. The present paper deals with an axisym-
metric case that makes possible the formation of stable damage. The particular case dealt
with is suitable for confining the microcracked region in a controllable manner. This makes
the ring geometry under internal pressure an attractive experimental configuration for
ceramic materials. The additional fact that the microcracked region is confined is a very
useful experimental asset because it makes the ring test much less sensitive to parasitic
stresses which are present in uniaxial tests. Experiments on such ring specimens made of
alumina are currently under way and we will present them in future publications.

A particular constitutive law for nontransforming ceramic materials has been used in
the present analysis. This is a necessary simplification at present, since the constitutive
identification of these materials is in its early stage, very similar to that of plasticity years
ago. The constitutive law used in the present work takes into account the anisotropic
damage and in particular the microcracks that are developed normal to the maximum
tensile stress. This behavior has been observed in many nontransforming ceramics. The
proposed constitutive model, although simple, includes the main features of the micro-
mechanisms responsible for the overall mechanical behavior of such materials. It can also
be shown that for the particular problem the strains are proportional. This fuct makes the
analysis valid even in the case where the strains are replaced by struin rates,

Studies on stress-induced microcracking have very uscful applications. In particular,
microcracking around a crack-tip may shicld the tip from remote loads and enhance the
toughness, Hence, in order to predict the increase in toughness, the material behavior needs
to be quantified independently. The present solution can be used in structural applications
such as pipes under internal pressure, and as a standard biaxial test for strength of ceramics.
Other types of damage evolution function (A(a,)) can also be used in expense of simplicity
and numerical effort.
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